Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Eur J Immunol ; : e2350721, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38651231

RESUMO

Previous research suggests that group IIA-secreted phospholipase A2 (sPLA2-IIA) plays a role in and predicts lethal COVID-19 disease. The current study reanalyzed a longitudinal proteomic data set to determine the temporal relationship between levels of several members of a family of sPLA2 isoforms and the severity of COVID-19 in 214 ICU patients. The levels of six secreted PLA2 isoforms, sPLA2-IIA, sPLA2-V, sPLA2-X, sPLA2-IB, sPLA2-IIC, and sPLA2-XVI, increased over the first 7 ICU days in those who succumbed to the disease but attenuated over the same time period in survivors. In contrast, a reversed pattern in sPLA2-IID and sPLA2-XIIB levels over 7 days suggests a protective role of these two isoforms. Furthermore, decision tree models demonstrated that sPLA2-IIA outperformed top-ranked cytokines and chemokines as a predictor of patient outcome. Taken together, proteomic analysis revealed temporal sPLA2 patterns that reflect the critical roles of sPLA2 isoforms in severe COVID-19 disease.

2.
Mol Pharmacol ; 105(3): 131-143, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38164625

RESUMO

Sphingolipids are an important class of lipids present in all eukaryotic cells that regulate critical cellular processes. Disturbances in sphingolipid homeostasis have been linked to several diseases in humans. Ceramides are central in sphingolipid metabolism and are largely synthesized by six ceramide synthase (CerS) isoforms (CerS1-6), each with a preference for different fatty acyl chain lengths. Although the tissue distribution of CerS mRNA expression in humans and the roles of CerS isoforms in synthesizing ceramides with different acyl chain lengths are known, it is unknown how CerS expression dictates ceramides and downstream metabolites within tissues. In this study, we analyzed sphingolipid levels and CerS mRNA expression in 3-month-old C57BL/6J mouse brain, heart, kidney, liver, lung, and skeletal muscle. The results showed that CerS expression and sphingolipid species abundance varied by tissue and that CerS expression was a predictor of ceramide species within tissues. Interestingly, although CerS expression was not predictive of complex sphingolipid species within all tissues, composite scores for CerSs contributions to total sphingolipids measured in each tissue correlated to CerS expression. Lastly, we determined that the most abundant ceramide species in mouse tissues aligned with CerS mRNA expression in corresponding human tissues (based on chain length preference), suggesting that mice are relevant preclinical models for ceramide and sphingolipid research. SIGNIFICANCE STATEMENT: The current study demonstrates that ceramide synthase (CerS) expression in specific tissues correlates not only with ceramide species but contributes to the generation of complex sphingolipids as well. As many of the CerSs and/or specific ceramide species have been implicated in disease, these studies suggest the potential for CerSs as therapeutic targets and the use of sphingolipid species as diagnostics in specific tissues.


Assuntos
Ceramidas , Oxirredutases , Esfingolipídeos , Camundongos , Animais , Humanos , Lactente , Esfingolipídeos/genética , Esfingolipídeos/metabolismo , Camundongos Endogâmicos C57BL , Ceramidas/genética , Ceramidas/metabolismo , Isoformas de Proteínas , Envelhecimento/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
3.
Oncogene ; 43(6): 406-419, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38097734

RESUMO

Lipid droplets (LDs) are dynamic organelles with a neutral lipid core surrounded by a phospholipid monolayer. Solid tumors exhibit LD accumulation, and it is believed that LDs promote cell survival by providing an energy source during energy deprivation. However, the precise mechanisms controlling LD accumulation and utilization in prostate cancer are not well known. Here, we show peroxisome proliferator-activated receptor α (PPARα) acts downstream of PIM1 kinase to accelerate LD accumulation and promote cell proliferation in prostate cancer. Mechanistically, PIM1 inactivates glycogen synthase kinase 3 beta (GSK3ß) via serine 9 phosphorylation. GSK3ß inhibition stabilizes PPARα and enhances the transcription of genes linked to peroxisomal biogenesis (PEX3 and PEX5) and LD growth (Tip47). The effects of PIM1 on LD accumulation are abrogated with GW6471, a specific inhibitor for PPARα. Notably, LD accumulation downstream of PIM1 provides a significant survival advantage for prostate cancer cells during nutrient stress, such as glucose depletion. Inhibiting PIM reduces LD accumulation in vivo alongside slow tumor growth and proliferation. Furthermore, TKO mice, lacking PIM isoforms, exhibit suppression in circulating triglycerides. Overall, our findings establish PIM1 as an important regulator of LD accumulation through GSK3ß-PPARα signaling axis to promote cell proliferation and survival during nutrient stress.


Assuntos
Gotículas Lipídicas , Neoplasias da Próstata , Masculino , Humanos , Animais , Camundongos , Glicogênio Sintase Quinase 3 beta , Gotículas Lipídicas/patologia , PPAR alfa/genética , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Proliferação de Células , Proteínas Proto-Oncogênicas c-pim-1/genética
4.
PLoS One ; 18(11): e0294355, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37983277

RESUMO

Salivary gland hypofunction is an adverse side effect associated with radiotherapy for head and neck cancer patients. This study delineated metabolic changes at acute, intermediate, and chronic radiation damage response stages in mouse salivary glands following a single 5 Gy dose. Ultra-high performance liquid chromatography-mass spectrometry was performed on parotid salivary gland tissue collected at 3, 14, and 30 days following radiation (IR). Pathway enrichment analysis, network analysis based on metabolite structural similarity, and network analysis based on metabolite abundance correlations were used to incorporate both metabolite levels and structural annotation. The greatest number of enriched pathways are observed at 3 days and the lowest at 30 days following radiation. Amino acid metabolism pathways, glutathione metabolism, and central carbon metabolism in cancer are enriched at all radiation time points across different analytical methods. This study suggests that glutathione and central carbon metabolism in cancer may be important pathways in the unresolved effect of radiation treatment.


Assuntos
Neoplasias de Cabeça e Pescoço , Xerostomia , Animais , Camundongos , Humanos , Glândulas Salivares/metabolismo , Glândula Parótida/efeitos da radiação , Neoplasias de Cabeça e Pescoço/radioterapia , Neoplasias de Cabeça e Pescoço/metabolismo , Carbono/metabolismo , Glutationa/metabolismo , Xerostomia/metabolismo
5.
Sci Rep ; 13(1): 20872, 2023 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-38012297

RESUMO

Firefighters have elevated rates of urinary tract cancers and other adverse health outcomes, which may be attributable to environmental occupational exposures. Untargeted metabolomics was applied to characterize this suite of environmental exposures and biological changes in response to occupational firefighting. 200 urine samples from 100 firefighters collected at baseline and two to four hours post-fire were analyzed using untargeted liquid-chromatography and high-resolution mass spectrometry. Changes in metabolite abundance after a fire were estimated with fixed effects linear regression, with false discovery rate (FDR) adjustment. Partial least squares discriminant analysis (PLS-DA) was also used, and variable important projection (VIP) scores were extracted. Systemic changes were evaluated using pathway enrichment for highly discriminating metabolites. Metabolome-wide-association-study (MWAS) identified 268 metabolites associated with firefighting activity at FDR q < 0.05. Of these, 20 were annotated with high confidence, including the amino acids taurine, proline, and betaine; the indoles kynurenic acid and indole-3-acetic acid; the known uremic toxins trimethylamine n-oxide and hippuric acid; and the hormone 7a-hydroxytestosterone. Partial least squares discriminant analysis (PLS-DA) additionally implicated choline, cortisol, and other hormones. Significant pathways included metabolism of urea cycle/amino group, alanine and aspartate, aspartate and asparagine, vitamin b3 (nicotinate and nicotinamide), and arginine and proline. Firefighters show a broad metabolic response to fires, including altered excretion of indole compounds and uremic toxins. Implicated pathways and features, particularly uremic toxins, may be important regulators of firefighter's increased risk for urinary tract cancers.


Assuntos
Bombeiros , Incêndios , Neoplasias Urológicas , Humanos , Ácido Aspártico , Toxinas Urêmicas , Metaboloma , Metabolômica/métodos , Prolina
6.
Prostaglandins Other Lipid Mediat ; 169: 106769, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37625781

RESUMO

Charcot-Marie-Tooth Disease (CMT) is a commonly inherited peripheral polyneuropathy. Clinical manifestations for this disease include symmetrical distal polyneuropathy, altered deep tendon reflexes, distal sensory loss, foot deformities, and gait abnormalities. Genetic mutations in heat shock proteins have been linked to CMT2. Specifically, mutations in the heat shock protein B1 (HSPB1) gene encoding for heat shock protein 27 (Hsp27) have been linked to CMT2F and distal hereditary motor and sensory neuropathy type 2B (dHMSN2B) subtype. The goal of the study was to examine the role of an endogenous mutation in HSPB1 in vivo and to define the effects of this mutation on motor function and pathology in a novel animal model. As sphingolipids have been implicated in hereditary and sensory neuropathies, we examined sphingolipid metabolism in central and peripheral nervous tissues in 3-month-old HspS139F mice. Though sphingolipid levels were not altered in sciatic nerves from HspS139F mice, ceramides and deoxyceramides, as well as sphingomyelins (SMs) were elevated in brain tissues from HspS139F mice. Histology was utilized to further characterize HspS139F mice. HspS139F mice exhibited no alterations to the expression and phosphorylation of neurofilaments, or in the expression of acetylated α-tubulin in the brain or sciatic nerve. Interestingly, HspS139F mice demonstrated cerebellar demyelination. Locomotor function, grip strength and gait were examined to define the role of HspS139F in the clinical phenotypes associated with CMT2F. Gait analysis revealed no differences between HspWT and HspS139F mice. However, both coordination and grip strength were decreased in 3-month-old HspS139F mice. Together these data suggest that the endogenous S139F mutation in HSPB1 may serve as a mouse model for hereditary and sensory neuropathies such as CMT2F.


Assuntos
Doença de Charcot-Marie-Tooth , Camundongos , Animais , Doença de Charcot-Marie-Tooth/genética , Doença de Charcot-Marie-Tooth/patologia , Proteínas de Choque Térmico/genética , Mutação/genética , Modelos Animais de Doenças , Esfingolipídeos
7.
medRxiv ; 2022 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-36451888

RESUMO

Previous research suggests that group IIA secreted phospholipase A 2 (sPLA 2 -IIA) plays a role in and predicts severe COVID-19 disease. The current study reanalyzed a longitudinal proteomic data set to determine the temporal (days 0, 3 and 7) relationship between the levels of several members of a family of sPLA 2 isoforms and the severity of COVID-19 in 214 ICU patients. The levels of six secreted PLA 2 isoforms, sPLA 2 -IIA, sPLA 2 -V, sPLA 2 -X, sPLA 2 -IB, sPLA 2 -IIC, and sPLA 2 -XVI, increased over the first 7 ICU days in those who succumbed to the disease. sPLA 2 -IIA outperformed top ranked cytokines and chemokines as predictors of patient outcome. A decision tree corroborated these results with day 0 to day 3 kinetic changes of sPLA 2 -IIA that separated the death and severe categories from the mild category and increases from day 3 to day 7 significantly enriched the lethal category. In contrast, there was a time-dependent decrease in sPLA 2 -IID and sPLA 2 -XIIB in patients with severe or lethal disease, and these two isoforms were at higher levels in mild patients. Taken together, proteomic analysis revealed temporal sPLA 2 patterns that reflect the critical roles of sPLA 2 isoforms in severe COVID-19 disease.

8.
FASEB J ; 36(10): e22558, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36165222

RESUMO

Oncogenic reprogramming of cellular metabolism is a hallmark of many cancers, but our mechanistic understanding of how such dysregulation is linked to tumor behavior remains poor. In this study, we have identified dihydroceramide desaturase (DES1)-which catalyzes the last step in de novo sphingolipid synthesis-as necessary for the acquisition of anchorage-independent survival (AIS), a key cancer enabling biology, and establish DES1 as a downstream effector of HER2-driven glucose uptake and metabolism. We further show that DES1 is sufficient to drive AIS and in vitro tumorigenicity and that increased DES1 levels-found in a third of HER2+ breast cancers-are associated with worse survival outcomes. Taken together, our findings reveal a novel pro-tumor role for DES1 as a transducer of HER2-driven glucose metabolic signals and provide evidence that targeting DES1 is an effective approach for overcoming AIS. Results further suggest that DES1 may have utility as a biomarker of aggressive and metastasis-prone HER2+ breast cancer.


Assuntos
Neoplasias da Mama , Oxirredutases , Transporte Biológico , Feminino , Glucose , Humanos , Oxirredutases/metabolismo , Esfingolipídeos
9.
J Clin Invest ; 131(19)2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34428181

RESUMO

There is an urgent need to identify the cellular and molecular mechanisms responsible for severe COVID-19 that results in death. We initially performed both untargeted and targeted lipidomics as well as focused biochemical analyses of 127 plasma samples and found elevated metabolites associated with secreted phospholipase A2 (sPLA2) activity and mitochondrial dysfunction in patients with severe COVID-19. Deceased COVID-19 patients had higher levels of circulating, catalytically active sPLA2 group IIA (sPLA2-IIA), with a median value that was 9.6-fold higher than that for patients with mild disease and 5.0-fold higher than the median value for survivors of severe COVID-19. Elevated sPLA2-IIA levels paralleled several indices of COVID-19 disease severity (e.g., kidney dysfunction, hypoxia, multiple organ dysfunction). A decision tree generated by machine learning identified sPLA2-IIA levels as a central node in the stratification of patients who died from COVID-19. Random forest analysis and least absolute shrinkage and selection operator-based (LASSO-based) regression analysis additionally identified sPLA2-IIA and blood urea nitrogen (BUN) as the key variables among 80 clinical indices in predicting COVID-19 mortality. The combined PLA-BUN index performed significantly better than did either one alone. An independent cohort (n = 154) confirmed higher plasma sPLA2-IIA levels in deceased patients compared with levels in plasma from patients with severe or mild COVID-19, with the PLA-BUN index-based decision tree satisfactorily stratifying patients with mild, severe, or fatal COVID-19. With clinically tested inhibitors available, this study identifies sPLA2-IIA as a therapeutic target to reduce COVID-19 mortality.


Assuntos
COVID-19/sangue , COVID-19/mortalidade , Fosfolipases A2 do Grupo II/sangue , SARS-CoV-2/metabolismo , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Criança , Intervalo Livre de Doença , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Índice de Gravidade de Doença , Taxa de Sobrevida
10.
Int J Mol Sci ; 22(13)2021 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-34203196

RESUMO

Background: Concerns are emerging that a high-fat diet rich in n-6 PUFA (n-6HFD) may alter gut microbiome and increase the risk of intestinal disorders. Research is needed to model the relationships between consumption of an n-6HFD starting at weaning and development of gut dysbiosis and colonic inflammation in adulthood. We used a C57BL/6J mouse model to compare the effects of exposure to a typical American Western diet (WD) providing 58.4%, 27.8%, and 13.7% energy (%E) from carbohydrates, fat, and protein, respectively, with those of an isocaloric and isoproteic soybean oil-rich n-6HFD providing 50%E and 35.9%E from total fat and carbohydrates, respectively on gut inflammation and microbiome profile. Methods: At weaning, male offspring were assigned to either the WD or n-6HFD through 10-16 weeks of age. The WD included fat exclusively from palm oil whereas the n-6HFD contained fat exclusively from soybean oil. We recorded changes in body weight, cyclooxygenase-2 (COX-2) expression, colon histopathology, and gut microbiome profile. Results: Compared to the WD, the n-6HFD increased plasma levels of n-6 fatty acids; colonic expression of COX-2; and the number of colonic inflammatory and hyperplastic lesions. At 16 weeks of age, the n-6HFD caused a marked reduction in the gut presence of Firmicutes, Clostridia, and Lachnospiraceae, and induced growth of Bacteroidetes and Deferribacteraceae. At the species level, the n-6HFD sustains the gut growth of proinflammatory Mucispirillum schaedleri and Lactobacillus murinus. Conclusions: An n-6HFD consumed from weaning to adulthood induces a shift in gut bacterial profile associated with colonic inflammation.


Assuntos
Colo/imunologia , Colo/metabolismo , Dieta Hiperlipídica/efeitos adversos , Disbiose/etiologia , Disbiose/microbiologia , Microbioma Gastrointestinal/fisiologia , Animais , Western Blotting , Masculino , Camundongos , Camundongos Endogâmicos C57BL
12.
medRxiv ; 2021 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-33655264

RESUMO

There is an urgent need to identify cellular and molecular mechanisms responsible for severe COVID-19 disease accompanied by multiple organ failure and high mortality rates. Here, we performed untargeted/targeted lipidomics and focused biochemistry on 127 patient plasma samples, and showed high levels of circulating, enzymatically active secreted phospholipase A 2 Group IIA (sPLA 2 -IIA) in severe and fatal COVID-19 disease compared with uninfected patients or mild illness. Machine learning demonstrated that sPLA 2 -IIA effectively stratifies severe from fatal COVID-19 disease. We further introduce a PLA-BUN index that combines sPLA 2 -IIA and blood urea nitrogen (BUN) threshold levels as a critical risk factor for mitochondrial dysfunction, sustained inflammatory injury and lethal COVID-19. With the availability of clinically tested inhibitors of sPLA 2 -IIA, our study opens the door to a precision intervention using indices discovered here to reduce COVID-19 mortality.

13.
Cell Death Dis ; 12(1): 27, 2021 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-33414460

RESUMO

Senescence is an antiproliferative mechanism that can suppress tumor development and can be induced by oncogenes such as genes of the Ras family. Although studies have implicated bioactive sphingolipids (SL) in senescence, the specific mechanisms remain unclear. Here, using MCF10A mammary epithelial cells, we demonstrate that oncogenic K-Ras (Kirsten rat sarcoma viral oncogene homolog) is sufficient to induce cell transformation as well as cell senescence-as revealed by increases in the percentage of cells in the G1 phase of the cell cycle, p21WAF1/Cip1/CDKN1A (p21) expression, and senescence-associated ß-galactosidase activity (SA-ß-gal). Furthermore, oncogenic K-Ras altered SL metabolism, with an increase of long-chain (LC) C18, C20 ceramides (Cer), and very-long-chain (VLC) C22:1, C24 Cer, and an increase of sphingosine kinase 1 (SK1) expression. Since Cer and sphingosine-1-phosphate have been shown to exert opposite effects on cellular senescence, we hypothesized that targeting SK1 could enhance oncogenic K-Ras-induced senescence. Indeed, SK1 downregulation or inhibition enhanced p21 expression and SA-ß-gal in cells expressing oncogenic K-Ras and impeded cell growth. Moreover, SK1 knockdown further increased LC and VLC Cer species (C18, C20, C22:1, C24, C24:1, C26:1), especially the ones increased by oncogenic K-Ras. Fumonisin B1 (FB1), an inhibitor of ceramide synthases (CerS), reduced p21 expression induced by oncogenic K-Ras both with and without SK1 knockdown. Functionally, FB1 reversed the growth defect induced by oncogenic K-Ras, confirming the importance of Cer generation in the senescent phenotype. More specifically, downregulation of CerS2 by siRNA blocked the increase of VLC Cer (C24, C24:1, and C26:1) induced by SK1 knockdown and phenocopied the effects of FB1 on p21 expression. Taken together, these data show that targeting SK1 is a potential therapeutic strategy in cancer, enhancing oncogene-induced senescence through an increase of VLC Cer downstream of CerS2.


Assuntos
Senescência Celular , Ceramidas/metabolismo , Genes ras , Proteínas de Membrana/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/fisiologia , Esfingosina N-Aciltransferase/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Linhagem Celular , Humanos
14.
Biomolecules ; 10(10)2020 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-33007922

RESUMO

Prostate cancer (PCa) is the most common male cancer and the second leading cause of cancer death in United States men. Controversy continues over the effectiveness of prostate-specific antigen (PSA) for distinguishing aggressive from indolent PCa. There is a critical need for more specific and sensitive biomarkers to detect and distinguish low- versus high-risk PCa cases. Discovery metabolomics were performed utilizing ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS) on plasma samples from 159 men with treatment naïve prostate cancer participating in the North Carolina-Louisiana PCa Project to determine if there were metabolites associated with aggressive PCa. Thirty-five identifiable plasma small molecules were associated with PCa aggressiveness, 15 of which were sphingolipids; nine common molecules were present in both African-American and European-American men. The molecules most associated with PCa aggressiveness were glycosphingolipids; levels of trihexosylceramide and tetrahexosylceramide were most closely associated with high-aggressive PCa. The Cancer Genome Atlas was queried to determine gene alterations within glycosphingolipid metabolism that are associated with PCa and other cancers. Genes that encode enzymes associated with the metabolism of glycosphingolipids were altered in 12% of PCa and >30% of lung, uterine, and ovarian cancers. These data suggest that the identified plasma (glyco)sphingolipids should be further validated for their association with aggressive PCa, suggesting that specific sphingolipids may be included in a diagnostic signature for PCa.


Assuntos
Biomarcadores Tumorais/sangue , Glicoesfingolipídeos/sangue , Metabolômica , Neoplasias da Próstata/sangue , Negro ou Afro-Americano , Idoso , Ceramidas/sangue , Humanos , Lipidômica/métodos , Masculino , Pessoa de Meia-Idade , Próstata/metabolismo , Próstata/patologia , Antígeno Prostático Específico/sangue , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Espectrometria de Massas em Tandem , População Branca/genética
15.
Prostaglandins Other Lipid Mediat ; 149: 106423, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32006664

RESUMO

Saturated fatty acids (SFA) have been known to trigger inflammatory signaling in metabolic tissues; however, the effects of specific SFAs in the intestinal epithelium have not been well studied. Several previous studies have implicated disruptions in sphingolipid metabolism by oversupply of SFAs in inflammatory process. Also, our previous studies have implicated sphingosine kinase 1 (SK1) and its product sphingosine-1-phosphate (S1P) as having key roles in the regulation of inflammatory processes in the intestinal epithelium. Therefore, to define the role for specific SFAs in inflammatory responses in intestinal epithelial cells, we examined myristate (C14:0) and palmitate (C16:0). Myristate, but not palmitate, significantly induced the pro-inflammatory cytokine tumor necrosis factor α (TNFα), and it was SK1-dependent. Interestingly, myristate-induced TNFα expression was not suppressed by inhibition of S1P receptors (S1PRs), hinting at a potential novel intracellular target of S1P. Additionally, myristate regulated the expression of TNFα via JNK activation in an SK1-dependent manner, suggesting a novel S1PR-independent target as a mediator between SK1 and JNK in response to myristate. Lastly, a myristate-enriched milk fat-based diet (MFBD) increased expression of TNFα in colon tissues and elevated the S1P to sphingosine ratio, demonstrating the potential of myristate-involved pathobiologies in intestinal tissues. Taken together our studies suggest that myristate regulates the expression of TNFα in the intestinal epithelium via regulation of SK1 and JNK.


Assuntos
Regulação da Expressão Gênica/efeitos dos fármacos , Mucosa Intestinal/citologia , Ácido Mirístico/farmacologia , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Fator de Necrose Tumoral alfa/genética , Animais , Linhagem Celular Tumoral , Ciclo-Oxigenase 2/genética , Feminino , Humanos , Masculino , Camundongos , Ratos
16.
Anal Biochem ; 575: 70-86, 2019 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-30917945

RESUMO

Sphingolipid metabolism plays a critical role in regulating processes that control cellular fate. This dynamic pathway can generate and degrade the central players: ceramide, sphingosine and sphingosine-1-phosphate in almost any membrane in the cell, adding an unexpected level of complexity in deciphering signaling events. While in vitro assays have been developed for most enzymes in SL metabolism, these assays are setup for optimal activity conditions and can fail to take into account regulatory components such as compartmentalization, substrate limitations, and binding partners that can affect cellular enzymatic activity. Therefore, many in-cell assays have been developed to derive results that are authentic to the cellular situation which may give context to alteration in SL mass. This review will discuss approaches for utilizing probes for mammalian in-cell assays to interrogate most enzymatic steps central to SL metabolism. The use of inhibitors in conjunction with these probes can verify the specificity of cellular assays as well as provide valuable insight into flux in the SL network. The use of inhibitors specific to each of the central sphingolipid enzymes are also discussed to assist researchers in further interrogation of these pathways.


Assuntos
Esfingolipídeos/metabolismo , Animais , Homeostase , Mamíferos , Sondas Moleculares , Análise Espectral
17.
J Lipid Res ; 60(4): 819-831, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30573560

RESUMO

Sphingolipids (SLs) have been implicated in numerous important cellular biologies; however, their study has been hindered by the complexities of SL metabolism. Furthermore, enzymes of SL metabolism represent a dynamic and interconnected network in which one metabolite can be transformed into other bioactive SLs through further metabolism, resulting in diverse cellular responses. Here we explore the effects of both lethal and sublethal doses of doxorubicin (Dox) in MCF-7 cells. The two concentrations of Dox resulted in the regulation of SLs, including accumulations in sphingosine, sphingosine-1-phosphate, dihydroceramide, and ceramide, as well as reduced levels of hexosylceramide. To further define the effects of Dox on SLs, metabolic flux experiments utilizing a d17 dihydrosphingosine probe were conducted. Results indicated the regulation of ceramidases and sphingomyelin synthase components specifically in response to the cytostatic dose. The results also unexpectedly demonstrated dose-dependent inhibition of dihydroceramide desaturase and glucosylceramide synthase in response to Dox. Taken together, this study uncovers novel targets in the SL network for the action of Dox, and the results reveal the significant complexity of SL response to even a single agent. This approach helps to define the role of specific SL enzymes, their metabolic products, and the resulting biologies in response to chemotherapeutics and other stimuli.


Assuntos
Antibióticos Antineoplásicos/farmacologia , Doxorrubicina/farmacologia , Redes e Vias Metabólicas , Esfingolipídeos/antagonistas & inibidores , Transporte Biológico/efeitos dos fármacos , Relação Dose-Resposta a Droga , Humanos , Células MCF-7 , Esfingolipídeos/metabolismo , Relação Estrutura-Atividade , Células Tumorais Cultivadas
18.
FASEB J ; 32(10): 5724-5736, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29768040

RESUMO

Saturated fatty acids (SFAs) have been shown to induce endoplasmic reticulum (ER) stress and chronic inflammatory responses, as well as alter sphingolipid metabolism. Disruptions in ER stress and sphingolipid metabolism have also been implicated in intestinal inflammation. Therefore, to elucidate the roles of SFAs in ER stress and inflammation in intestinal epithelial cells, we examined myristate (C14:0) and palmitate (C16:0). Myristate, but not palmitate, induced ER stress signaling, including activation of inositol-requiring enzyme 1 (IRE1) and X-box binding protein 1 (XBP1) signaling. Myristate significantly increased C14-ceramide levels, whereas palmitate increased several long-chain ceramides. To define the role of ceramide synthases (CerSs) in myristate-induced ER stress, we used the pharmacologic inhibitor, fumonisin B1 (FB1), and small interfering RNA (siRNA) for CerS5 and 6, the primary isoforms that are involved in C14-ceramide generation. FB1 and siRNA for CerS5 or 6 suppressed myristate-induced C14-ceramide generation and XBP1 splicing (XBP1s). Moreover, increased XBP1s induced the downstream expression of IL-6 in a CerS5/6-dependent manner. In addition, a myristate-enriched milk fat-based diet, but not a lard-based diet, increased C14-ceramide, XBP1s, and IL-6 expression in vivo. Taken together, our data suggest that myristate modulates ER stress and cytokine production in the intestinal epithelium via CerS5/6 and C14-ceramide generation.-Choi, S., Snider, J. M., Olakkengil, N., Lambert, J. M., Anderson, A. K., Ross-Evans, J. S., Cowart, L. A., Snider, A. J. Myristate-induced endoplasmic reticulum stress requires ceramide synthases 5/6 and generation of C14-ceramide in intestinal epithelial cells.


Assuntos
Ceramidas/biossíntese , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Células Epiteliais/metabolismo , Mucosa Intestinal/metabolismo , Ácido Mirístico/farmacologia , Esfingosina N-Aciltransferase/metabolismo , Animais , Linhagem Celular , Ceramidas/genética , Células Epiteliais/patologia , Feminino , Mucosa Intestinal/patologia , Masculino , Camundongos , Ratos , Esfingosina N-Aciltransferase/genética
19.
J Lipid Res ; 59(6): 1046-1057, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29610123

RESUMO

Sphingolipids constitute a dynamic metabolic network that interconnects several bioactive molecules, including ceramide (Cer), sphingosine (Sph), Sph 1-phosphate, and Cer 1-phosphate. The interconversion of these metabolites is controlled by a cohort of at least 40 enzymes, many of which respond to endogenous or exogenous stimuli. Typical probing of the sphingolipid pathway relies on sphingolipid mass levels or determination of the activity of individual enzymes. Either approach is unable to provide a complete analysis of flux through sphingolipid metabolism, which, given the interconnectivity of the sphingolipid pathway, is critical information to identify nodes of regulation. Here, we present a one-step in situ assay that comprehensively probes the flux through de novo sphingolipid synthesis, post serine palmitoyltransferase, by monitoring the incorporation and metabolism of the 17 carbon dihydrosphingosine precursor with LC/MS. Pulse labeling and analysis of precursor metabolism identified sequential well-defined phases of sphingolipid synthesis, corresponding to the activity of different enzymes in the pathway, further confirmed by the use of specific inhibitors and modulators of sphingolipid metabolism. This work establishes precursor pulse labeling as a practical tool for comprehensively studying metabolic flux through de novo sphingolipid synthesis and complex sphingolipid generation.


Assuntos
Espectrometria de Massas/métodos , Esfingolipídeos/metabolismo , Cromatografia Líquida , Humanos , Células MCF-7 , Oxirredutases/metabolismo , Fosfatos/metabolismo , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA